Main Page

From Hall A Wiki
Revision as of 12:40, 26 January 2009 by Camsonne (Talk | contribs) (Hall A detectors)

Jump to: navigation, search

Hall A Wiki

Consult the User's Guide for information on using the wiki software.

Current Experiment: E06-010 Transversity

Recent Experiment E08-007


Previously run experiment E04-007

Hall A detectors

The Compton polarimeter can be used to non-invasively monitor the beam polarization. It has three major components: an optics table with a laser that can lock to a Fabry-Perot cavity; an electron detector to count scattered electrons; and a photon detector to count scattered photons. At present, the electron detector is not online, so only the photon detector can be used.

Monitoring the beam polarization using the Compton polarimeter requires two steps:

  • Take Compton data. These can be long runs, but since you can only check the polarization after a run has ended, it is best to start a new run every hour or two. When you end a run, click "Submit" to dismiss the gray pop-up window.
  • After a Compton run has analyzed (this takes about 10% the length of the run), check the logbook [1] for the Compton asymmetry.
  • If runcontrol shows that it can't communicate with a ROC or if the data won't analyze, stop the current run and type "coda reboot" into a compton@compton terminal window to reboot the ROCs and CODA.

In addition, getting good data sometimes requires a CIP (Compton interaction point) scan, where the beam tune is adjusted slightly in order to maximize its interaction with the photons in the cavity. Call an expert to perform such a scan if:

  • There has been a new beam tune through the Compton chicane.
  • The beam has been shut down for longer than a shift.
  • The photon counting rates drop drastically during steady running. (Compton rate (blue line) in strip chart -- see below)

Taking Compton Data

CODA might be running already from the compton machine, which is the leftmost active monitor in the back room of the Hall A counting room.

Runcontrol Already Open

To start a run, click the "Start" button in the runcontrol window. After a time, you should see the event count start to go up and the message "Transition Go Succeeded" at the bottom of the screen.

When it is time to end a run, click the "End Run" button in the runcontrol window. A gray screen should pop up, giving you the opportunity to enter a message (say, if the beam was very trippy). Make sure you dismiss the window by clicking "Submit" -- not "Exit"! Hitting "Submit" sends the run to the analyzer, which is very important. (You can also add a comment about anything of note that happened during the run.)

You may additionally get a pop-up window saying "End run failed!" on the runcontrol window. This is okay. Dismiss this popup window and click the "Reset" button on runcontrol. (Yes, despite the dire warning, you really do want to do this.) You should then be able to start the next run.

While running, you can monitor the beam current, photon rates, cavity status, etc using a strip chart. If the chart is not already open, type "StripTool transversity" in a compton@compton terminal. (The password is the same as for the adaq account.) Here's what it might look like:

Transversity striptool.jpg

  • Purple line: Beam current (uA). In the figure you can see that it has tripped a few times.
  • Yellow line: Vertical beam position. This should remain roughly constant. A beam trip sends it to the top of the chart (position 0).
  • Red line: Cavity power. This should be a square wave: the cavity is locked in the right polarization state, then turns off, then locks in the left polarization state, then turns off, then repeats. The powers for the right and left states appear different but are actually the same. The power should stay comfortably above 400 W. (Cavity will not lock during extended beam trips.)
  • Blue line: Scattered photon rates in the detector. As in the figure, these should track the cavity on/off states; if you can tell from the blue line alone whether the cavity is on or off, then you are probably getting good Compton data.
    • If this is not the case, this may be due to a bad tune resulting from very low current, or the Compton chicane is off. If one of these is not the cause, contact a Compton expert.
    • If your blue line is zero or not displaying, there are three possible causes:
      • Beam trip
      • HV trip. Check the Beamline HV card 11. Channel 1 should be set to -1800 V for the GSO detector.
      • DAQ is not running. Start a CODA run and the blue line should come back. If CODA is already running, it may be in a strange state;

end the run and type "coda reboot" into a terminal to restart the ROCs and CODA, then start a new run.

Starting from Scratch

SSH into the compton@compton account. The password is the same as for the adaq account.

To begin a new CODA instance, type

   coda start

To recover from a CODA crash, type

   coda reboot

Troubleshooting

"End of run failed!"

After ending a run, a pop-up window may display saying "End of run failed!" This is a known bug. Click OK to dismiss the pop-up window. Then click "Reset" in the top left-hand corner of the runcontrol GUI. (You will be asked whether you really mean to do this; you do.) After resetting runcontrol, you should be able to start a run.

HV Trip

The Compton HV is Beamline card 11, slot 1. It should be set to -1800 V. If it trips persistently, it may mean that the rates are very bad.

No Photon Events / ROC(s) Not Responding

Photon events should be displayed in a strip chart while the DAQ is running. If the strip chart is displaying 0 photon events, and the beam and DAQ are both on (there will be no photon events during a beam trip!), then you will need to disconnect from the DAQ and restart CODA by typing

   coda reboot

and

   coda_er -n ER1

in separate compton@compton terminals.

Checking a Run

Compton analysis results are written to the Compton logbook, which can be accessed onsite at [2]

Find the run number (newest runs are at the top) and click the html link. (The pdf link does not work.) This will open a new window with the analysis results.

The full results will not display right away (because the analyzer does not finish immediately). It takes the analyzer about 10% of the runtime to complete. So an hourlong run will be analyzed after about 6 minutes.

The most important graph is about a third of the way down the page. You can find it quickly by searching the page for "Counting Rates". It's the graph titled Asym in ADC bins:

Compton asym graph.jpg

Here are the important things to look for:

  • The green line (cavity off) should be consistent with zero. This shows that there is no asymmetry in the background.
  • The red/blue lines (cavity on, right/left) should be roughly symmetric about zero. This reflects the fact that flipping the cavity polarization changes the sign of the asymmetry. (It's ok for there to be slight differences as above.)
  • At the extremes (highest/lowest point) we should see an asymmetry greater than about 5%. (Here, we see extremes of about 8% and just over 6% for right and left.) If the asymmetry drops below 3%, we worry. Call an expert.

Compton Experts

Expert Phone Pager
Sirish Nanda x7176 757-584-7176
Alexandre Camsonne x5064 757-584-5064
Abdurahim Rakhman x5626 757-584-5452
Diana Parno 202-821-3471 (cell)

Software

Hall A analyzer link title

Run Coordinator Tools

Experiments

Getting started

Tech Page

DAQ

Lumi

Hall A He3 Polarized Target

Target Lab

Info during Tranversity experiment period

System Description

Manuals

Check Lists

Expert Information

Test page

Misc